首页 | 本学科首页   官方微博 | 高级检索  
     


Water transport through plant tissue: the apoplasm and symplasm pathways
Authors:Fred J. Molz
Affiliation:Civil Engineering Department, Auburn University, Auburn, Alabama 36830, U.S.A.
Abstract:A detailed quantitative analysis of water flow through the apoplasm and symplasm of plant tissue is presented. The analysis results in two coupled diffusion equations which describe water transport in the two pathways. Various parameters entering the analysis identify the physical properties of the tissue which control the transport process as the resistance to water flow per cell in the two parallel pathways, the resistance per cell between pathways, and the water capacity per cell in the two pathways. Values for the several resistances and water capacities are estimated from available data, and a model problem is solved wherein a sheet of tissue at an initial water potential of — δ bars is immersed in a container of water. The resulting solutions show that depending on the values assigned to the controlling parameters, local water potential equilibrium between each cell and its cell wall may or may not obtain. In the special case of local equilibrium (water potential in the symplasm and apoplasm pathways essentially equal), the transport process can be described by a single diffusion equation which is derived along with an expression for the tissue diffusivity. It is concluded that the weakest link in the analysis is the estimated value for the permeability of the plasmodesma membrane, and that a logical extension of the theory would be to include the effects of a diffusable solute.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号