首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetic and sequence-structure-function analysis of known LinA variants with different hexachlorocyclohexane isomers
Authors:Sharma Pooja  Pandey Rinku  Kumari Kirti  Pandey Gunjan  Jackson Colin J  Russell Robyn J  Oakeshott John G  Lal Rup
Institution:Department of Zoology, University of Delhi, Delhi, India.
Abstract:

Background

Here we report specific activities of all seven naturally occurring LinA variants towards three different isomers, α, γ and δ, of a priority persistent pollutant, hexachlorocyclohexane (HCH). Sequence-structure-function differences contributing to the differences in their stereospecificity for α-, γ-, and δ-HCH and enantiospecificity for (+)- and (?)-α -HCH are also discussed.

Methodology/Principal Findings

Enzyme kinetic studies were performed with purified LinA variants. Models of LinA2B90A A110T, A111C, A110T/A111C and LinA1B90A were constructed using the FoldX computer algorithm. Turnover rates (min?1) showed that the LinAs exhibited differential substrate affinity amongst the four HCH isomers tested. α-HCH was found to be the most preferred substrate by all LinA''s, followed by the γ and then δ isomer.

Conclusions/Significance

The kinetic observations suggest that LinA-γ1-7 is the best variant for developing an enzyme-based bioremediation technology for HCH. The majority of the sequence variation in the various linA genes that have been isolated is not neutral, but alters the enantio- and stereoselectivity of the encoded proteins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号