首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rapid isolation of photosystem I chlorophyll-binding proteins by anion exchange perfusion chromatography
Authors:Staffan E Tjus  Margrit Roobol-Boza  Lars Olof Pålsson  Bertil Andersson
Institution:(1) Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden;(2) Department of Physical Chemistry, University of Umeå, S-901 87 Umeå, Sweden
Abstract:With the new method of anion exchange perfusion chromatography we have devised an extremely rapid technique to subfractionate spinach Photosystem I into its chlorophyll a containing core complex and various components of the Photosystem I light-harvesting antenna (LHC I). The isolation time for the LHC I subcomplexes following solubilisation of native Photosystem I was reduced from 50 h using traditional density centrifugation procedures down to only 10–25 min by perfusion chromatography. Within this very short period of isolation, LHC I has been obtained as subfractions highly enriched in Lhca2+3 (LHC I-680) and Lhca1+4 (LHC I-730). Moreover, other highly enriched subfractions of LHC I such as Lhca2, Lhca3 and Lhca1+2+4 were obtained where the later two populations have not previously been obtained in a soluble form and without the use of SDS. These various subfractions of the LHC I antenna have been characterised by absorption spectroscopy, 77 K fluorescence-spectroscopy and SDS-PAGE demonstrating their identities, functional intactness and purity. Furthermore, the analyses located a chlorophyll b pool to preferentially transfer its excitation energy to the low energy F735 chromophore, and located specifically the origin of the 730 nm fluorescence to the Lhca4 component. It was also revealed that Lhca2 and Lhca3 have identical light-harvesting properties. The isolated Photosystem I core complex showed high electron transport capacity (1535 mgrmoles O2 mg Chl–1 h–1) and low fluorescence yield (0.4%) demonstrating its high functional integrity. The very rapid isolation procedure based upon perfusion chromatography should in a significant way facilitate the subfractionation of Photosystem I proteins and thereby allow more accurate functional and structural studies of individual components.Abbreviations a.u. arbitrary units - DCIP 2.6-dichlorophenol indophenol - LHC light harvesting complex
Keywords:fluorescence  LHC I-680  LHC I-730  light-harvesting complex I (LHC I)  PS I
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号