首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Comparison of the secretory processes in the parotid and sublingual glands of the mouse. 1. Regulation of the secretory processes.
Authors:A P Vreugdenhil  P A Roukema
Abstract:1. Secretion from the mucous sublingual gland of the mouse has been investigated and compared with the serous parotid gland. The influence of acetylcholine, noradrenalin and adrenalin on the secretion of glycoproteins (e.g. mucins) and proteins (e.g. amylase) from these glands in vitro, and the involvement of cyclic AMP and Ca2+ has been studied. 2. Secretion from the parotid gland could be stimulated by both acetylcholine and the catecholamines. It appears that cyclic AMP plays an important role in the adrenergic secretory process, but not in the cholinergic-induced secretion. In the latter case, exogenous Ca2+ strongly increased the secretion. 3. Mucin secretion from the sublingual gland could be affected by acetylcholine in the presence of exogenous Ca2+. Noradrenalin and adrenalin induced only a slow mucin secretion and, for this secretory process, exogenous Ca2+ is also required. Though cyclic AMP is present in the sublingual gland, no influence on its level could be detected in this gland after stimulation of the adrenergic beta-receptor, whereas, in contrast to the parotid gland, dibutyryl cyclic AMP induced only a slow secretion. Because it was observed that the sublingual gland of the mouse is not innervated sympathetically, it seems reasonable to suppose that the catecholamines stimulate the mucin secretion from this gland via hormonal receptors and not via the adrenergic beta-receptor. 4. The protein secretion from the sublingual gland could be stimulated by both acetylcholine and the catecholamines. An involvement of cyclic AMP in this process was not observed. Addition of exogenous Ca2+ is less important, as was found for the mucin secretion. So it has been concluded that protein and mucin secretion from the sublingual gland are regulated via different pathways.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号