首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differential alterations in metabolic pattern of the six major UsnRNAs during development
Authors:Rabindranath Ray  Kaushik Ray  Chinmay K Panda
Institution:(1) Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Calcutta, India;(2) Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
Abstract:The uridylic acid rich nuclear RNAs (U1-U6 snRNAs) are involved mainly in the processing of pre-mRNA and pre-rRNA. So, any control of cell growth through pre-mRNA/pre-rRNA processing may have some regulation through altered UsnRNAs metabolism. With this idea, attempts have been made to see how the metabolism of the six major UsnRNAs' changed during the normal process of cellular proliferation associated with differentiation from pluripotent/totipotent stem cells of early embryonic stage to much more differentiated state of different cell/tissue lineages in different tissues/organs during the fetal and neonatal stages of growth. It has been seen that the levels of the six major UsnRNAs were high in day 8 embryo when the cells were mainly pluripotent/totipotent in nature, and during the progression of embryonic development the levels of these UsnRNAs gradually decreased (sim35-65%) up to the midgestational period (day 13) with some exception, when the organogenesis has already been started. However in the fetal life, the levels of these UsnRNAs were maximum or comparable around 18 ± 2 days of gestation in comparison to that in day 8 embryo when the kinetics of the maturational status of the different organs were quite high. But, the levels of these UsnRNAs' became low during day 21 of fetal life or in day 0 of birth (perturation period) in all the tissues/organs except high UsnRNAs' level in spleen. In the neonatal life, around 3 ± 1 days of birth these UsnRNAs' levels again became maximum in all the tissues/organs (except in thymus) followed by decrease up to 5/6 days, and to become steady with slight increase within one to two weeks, when the kinetics of the organ maturation reached to a steady state. In case of thymus, the levels of the U3-U6 snRNAs were high on day 0 of birth followed by decrease in their level on day 1/2 and then increased to become steady within 2-4 weeks; whereas the U1 and U2 snRNAs' levels were high on day 3 of birth and the subsequent changes were similar to that in other tissues/organs.Thus the different UsnRNAs' metabolism in the perturation period and in the early stages of neonatal life has indicated the differential cellular functions in these two stages of development. These alterations in the metabolism of these UsnRNAs might be due to the differential changes in the rate of synthesis of these UsnRNAs and/or with their differential turnover rate in the different stages of development. Also, the differential variations of these UsnRNAs' levels have been observed among the different tissues/organs at the respective stages of development indicating the differences in the UsnRNAs' metabolism among the different cell/tissue lineages. Thus, it can be concluded that the metabolism of these UsnRNAs were developmentally regulated with some cell/tissue lineage variations, which might have some role in the developmentally regulated cellular process of proliferation and differentiation, through altered RNA splicing and processing.
Keywords:development  cellular proliferation and differentiation  UsnRNAs  UsnRNAs' metabolism
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号