首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thermotropic lipid phase separation in the human immunodeficiency virus
Authors:L M Gordon  F C Jensen  C C Curtain  P W Mobley  R C Aloia
Institution:Rees-Stealy Research Foundation, San Diego, CA 92101.
Abstract:The presence of thermodependent lipid domains in the envelope of the human immunodeficiency virus (HIV) was studied. HIV was propagated in Hut-78 cells and purified by differential-gradient centrifugation. Since the virus was highly infectious in cell culture and Western blots of detergent-inactivated HIV showed envelope proteins when exposed to sera containing anti-HIV antibodies, this viral preparation was not deficient in 'spike' or 'knob' particles. Electron spin resonance (ESR) studies of intact HIV labeled with 5-nitroxide stearate (5-NS) indicated that a temperature-dependent lipid phase separation occurs with a high onset at approx. 42 degrees C and a low onset at approx. 15 degrees C. Cooling below 42 degrees C induces 5-NS clustering. Similar phase separations with high onsets at approx. 37-38 degrees C were previously identified in 5-NS labeled human erythrocytes (cholesterol/phospholipid (C/P) molar ratio = 0.90) and cholesterol-loaded (C/P = 0.85-0.98) rat liver plasma membranes. These were attributed to a temperature-sensitive redistribution of endogenous lipid components such that 5-NS is excluded from cholesterol-rich domains and tends to reside in cholesterol-poor domains at low temperatures. Since HIV has a lipid envelope with a similarly high C/P of 0.88 (Aloia et al. (1988) Proc. Natl. Acad. Sci. USA 85, 900-904), cholesterol-rich and cholesterol-poor domains also probably exist in HIV at physiologic temperatures. The reduced stability and infectivity of HIV noted on heating above 42 degrees C may be due, in part, to the abolition of these thermodependent domains.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号