首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thermal equilibrium of two conformations in photosensitive nitrile hydratase probed by the FTIR band of nitric oxide bound to the non-heme iron center
Authors:Suzuki Hiroyuki  Nojiri Masaki  Kamiya Nobuo  Noguchi Takumi
Institution:Institute of Materials Science, University of Tsukuba, Tsukuba 305-8573.
Abstract:Nitrile hydratase (NHase) from Rhodococcus N-771 is a novel enzyme that is inactive in the dark due to an enodogenous nitric oxide (NO) molecule bound to the non-heme iron center, and is activated by its photodissociation. FTIR spectra in the NO stretching region of the dark-inactive NHase were recorded in the temperature range of 270-80 K. Two NO peaks were observed at 1854 and 1846 cm-1 at 270 K, and both frequencies upshifted as the temperature was lowered, retaining the peak separation of 8-9 cm-1. The relative intensity of the lower-frequency peak increased with decreasing temperature up to ~120 K, whereas it was mostly unchanged below this temperature. This observation indicates that two distinct conformations with slightly different NO structures are thermally equilibrated in the dark-inactive NHase above ~120 K, and the interconversion is frozen-in at lower temperatures. The intensity ratio of the NO bands changed gradually upon increasing the pH from 5.5 to 11.0, but no specific pKa value was found. This result, together with the comparison of the light-induced FTIR difference spectra measured at pH 6.5 and 9.0, suggests that the protonation/deprotonation of a specific amino acid group in the active site of NHase is not a direct cause of the occurrence of the two conformations, although several protonatable groups in the protein may influence the energetics of the two conformers. From the previous observation that the isolated alpha subunit of NHase exhibited a single broad NO peak, it is suggested that interaction of the beta subunit forming the reactive cavity is essential for the double-minimum potential of the active-site structure. The frequencies and widths of the two NO bands changed upon addition of propionamide, 1,4-dioxane, and cyclohexyl isocyanide, indicating that these compounds are bound to the active pocket and change the interactions of the iron center or the dielectric environments around the NO molecule. Thus, the NO bands of NHase can also be a useful probe to monitor the binding of substrates and their analogues to the active pocket.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号