首页 | 本学科首页   官方微博 | 高级检索  
     


Plasma free amino acid profiling of five types of cancer patients and its application for early detection
Authors:Miyagi Yohei  Higashiyama Masahiko  Gochi Akira  Akaike Makoto  Ishikawa Takashi  Miura Takeshi  Saruki Nobuhiro  Bando Etsuro  Kimura Hideki  Imamura Fumio  Moriyama Masatoshi  Ikeda Ichiro  Chiba Akihiko  Oshita Fumihiro  Imaizumi Akira  Yamamoto Hiroshi  Miyano Hiroshi  Horimoto Katsuhisa  Tochikubo Osamu  Mitsushima Toru  Yamakado Minoru  Okamoto Naoyuki
Affiliation:Molecular Pathology and Genetics Division, Kanagawa Cancer Center, Yokohama, Japan. miyagi@gancen.asahi.yokohama.jp
Abstract:

Background

Recently, rapid advances have been made in metabolomics-based, easy-to-use early cancer detection methods using blood samples. Among metabolites, profiling of plasma free amino acids (PFAAs) is a promising approach because PFAAs link all organ systems and have important roles in metabolism. Furthermore, PFAA profiles are known to be influenced by specific diseases, including cancers. Therefore, the purpose of the present study was to determine the characteristics of the PFAA profiles in cancer patients and the possibility of using this information for early detection.

Methods and Findings

Plasma samples were collected from approximately 200 patients from multiple institutes, each diagnosed with one of the following five types of cancer: lung, gastric, colorectal, breast, or prostate cancer. Patients were compared to gender- and age- matched controls also used in this study. The PFAA levels were measured using high-performance liquid chromatography (HPLC)–electrospray ionization (ESI)–mass spectrometry (MS). Univariate analysis revealed significant differences in the PFAA profiles between the controls and the patients with any of the five types of cancer listed above, even those with asymptomatic early-stage disease. Furthermore, multivariate analysis clearly discriminated the cancer patients from the controls in terms of the area under the receiver-operator characteristics curve (AUC of ROC >0.75 for each cancer), regardless of cancer stage. Because this study was designed as case-control study, further investigations, including model construction and validation using cohorts with larger sample sizes, are necessary to determine the usefulness of PFAA profiling.

Conclusions

These findings suggest that PFAA profiling has great potential for improving cancer screening and diagnosis and understanding disease pathogenesis. PFAA profiles can also be used to determine various disease diagnoses from a single blood sample, which involves a relatively simple plasma assay and imposes a lower physical burden on subjects when compared to existing screening methods.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号