首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transient reactivation of CSF in parthenogenetic one-cell mouse embryos
Authors:Ciemerych M A  Kubiak J Z
Institution:Department of Embryology, Warsaw University, Poland.
Abstract:During meiosis, the cytostatic factor (CSF) activity stabilizes the activity of the M-phase promoting factor (MPF) in metaphase II arrested vertebrate oocytes. Upon oocyte activation, the inactivation of both MPF and CSF enables the entry into the first embryonic mitotic cell cycle. Using a biological assay based on cell-fusion (hybrid between a parthenogenetically activated egg entering the first mitotic division and an activated oocyte), we observed that in activated mouse oocytes a first drop in CSF activity is detectable as early as 20 min post-activation. This suggests that CSF is inactivated upon MPF inactivation. However, CSF activity increases again to reach a maximum 60 min post-activation and gradually disappears during the following 40 min. Thus, in activated mouse oocytes (undergoing the transition to interphase) CSF activity fluctuates before definitive inactivation. We found that hybrids arrested in M-phase, thus containing CSF activity after oocyte activation, have activated forms of MAP kinases while hybrids in interphase have inactive forms of these enzymes. We postulate that CSF inactivation in mouse oocytes proceeds in two steps. The initial inactivation of CSF, required for MPF inactivation, is transient and does not require MAP kinase inactivation. The final inactivation of CSF, required for normal embryonic cell cycle progression, is dependent upon the inactivation of MAP kinases.
Keywords:cell cycle  MAP kinase  meiosis  mitosis  protein phosphorylation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号