Distinct Sarcomeric Substrates Are Responsible for Protein Kinase D-mediated Regulation of Cardiac Myofilament Ca2+ Sensitivity and Cross-bridge Cycling |
| |
Authors: | Sonya C. Bardswell Friederike Cuello Alexandra J. Rowland Sakthivel Sadayappan Jeffrey Robbins Mathias Gautel Jeffery W. Walker Jonathan C. Kentish Metin Avkiran |
| |
Affiliation: | From the ‡Cardiovascular Division, King''s College London, London SE1 7EH, United Kingdom, ;the §Department of Pediatrics, Cincinnati Children''s Hospital Medical Center, Cincinnati, Ohio 45229, and ;the ¶Molecular Cardiovascular Research Program, University of Arizona, Tuscon, Arizona 85724 |
| |
Abstract: | ![]() Protein kinase D (PKD), a serine/threonine kinase with emerging cardiovascular functions, phosphorylates cardiac troponin I (cTnI) at Ser22/Ser23, reduces myofilament Ca2+ sensitivity, and accelerates cross-bridge cycle kinetics. Whether PKD regulates cardiac myofilament function entirely through cTnI phosphorylation at Ser22/Ser23 remains to be established. To determine the role of cTnI phosphorylation at Ser22/Ser23 in PKD-mediated regulation of cardiac myofilament function, we used transgenic mice that express cTnI in which Ser22/Ser23 are substituted by nonphosphorylatable Ala (cTnI-Ala2). In skinned myocardium from wild-type (WT) mice, PKD increased cTnI phosphorylation at Ser22/Ser23 and decreased the Ca2+ sensitivity of force. In contrast, PKD had no effect on the Ca2+ sensitivity of force in myocardium from cTnI-Ala2 mice, in which Ser22/Ser23 were unavailable for phosphorylation. Surprisingly, PKD accelerated cross-bridge cycle kinetics similarly in myocardium from WT and cTnI-Ala2 mice. Because cardiac myosin-binding protein C (cMyBP-C) phosphorylation underlies cAMP-dependent protein kinase (PKA)-mediated acceleration of cross-bridge cycle kinetics, we explored whether PKD phosphorylates cMyBP-C at its PKA sites, using recombinant C1C2 fragments with or without site-specific Ser/Ala substitutions. Kinase assays confirmed that PKA phosphorylates Ser273, Ser282, and Ser302, and revealed that PKD phosphorylates only Ser302. Furthermore, PKD phosphorylated Ser302 selectively and to a similar extent in native cMyBP-C of skinned myocardium from WT and cTnI-Ala2 mice, and this phosphorylation occurred throughout the C-zones of sarcomeric A-bands. In conclusion, PKD reduces myofilament Ca2+ sensitivity through cTnI phosphorylation at Ser22/Ser23 but accelerates cross-bridge cycle kinetics by a distinct mechanism. PKD phosphorylates cMyBP-C at Ser302, which may mediate the latter effect. |
| |
Keywords: | Contractile Protein Heart Protein Phosphorylation Serine/Threonine Protein Kinase Signal Transduction Calcium Sensitivity Cardiac Contraction Sarcomeric Proteins |
|
|