Abstract: | Analogs of Ac-[Nle4]-α-MSH4–11-NH2 and Ac-[Nle4, D -Phe7]-α-MSH4–11-NH2 were prepared with D -isomeric replacements at the His6, Arg8, and Trp9 residues. The requirement for an indole moiety at position 9 also was evaluated by replacement with L -leucine in both parent fragment analogs. D -isomeric replacements at positions 6 and 8 in either series were detrimental to biological potency in frog (Rana pipiens) and lizard skin (Anolis carolinensis) in vitro melanotropic assays. However, Ac-[Nle4, D -Trp9]-α-MSH4–11-NH2 and Ac-[Nle4, D -Phe7, D -Trp9]-α-MSH4–11-NH2 were equipotent and 10 × more potent than Ac-[Nle4]-α-MSH4–11-NH2, respectively, in the lizard skin bioassay, and 30 and 1900 times more potent in the frog skin bioassay. Ac-[Nle4, D -Phe7, D -Trp9]-α-MSH4–11-NH2 was 3 × more potent than α-MSH in the frog skin bioassay. Proton nmr studies in aqueous solution revealed a marked preservation of the backbone conformation of these linear analogs. Chemical-shift variations due to the through-space anisotropic influence of the core aromatic amino acid residues permitted evaluation of side-chain topology. The observed topology was consistent with nonhydrogen-bonded β-like structure (? = ?139°, ψ = +135° for L -amino acids; ? = +139°, ψ = ?135° for D -amino acids) as the predominant solution conformation. The biological and conformational data suggest that high melanotropic potency requires a close spatial arrangement of the His6, Phe7, and Arg8 side chains. |