首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microsatellite diversity and population genetic structure of yellowcheek, Elopichthys bambusa (Cyprinidae) in the Yangtze River
Authors:Khalid Abbas  Xiaoyun Zhou  Yang Li  Zexia Gao  Weimin Wang
Institution:1. College of Fisheries, Key Lab of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, PR China;2. Department of Animal Sciences, Quaid-i-azam University, 45320, Islamabad, Pakistan
Abstract:Yellowcheek carp (Elopichthys bambusa) is the only species of genus Elopichthys. It is widely distributed in Chinese freshwaters but currently its populations have declined to threatening level. We examined the genetic diversity and population structure of E. bambusa in the Yangtze River basin. A total of nine polymorphic microsatellite markers were employed to study five populations occurring in middle and lower reaches of the river. The results revealed low-to-moderate genetic diversity. The number of alleles per locus varied between 3 and 8 with an average of 4.8. Observed heterozygosity ranged from 0.15 to a maximum of 1.00. Significant deviations (P < 0.01) from Hardy–Weinberg equilibrium were observed for all the tested locus-population combinations with clear heterozygosity deficits. AMOVA indicated that majority of the variance lies within populations (93.81%) than among the populations (7.05%). Pairwise FST and unbiased genetic distance pointed out significant differentiation among the samples from populations with different connections to the Yangtze River. In the UPGMA dendrogram, clustering pattern of populations indicated that most of the populations are reproductively isolated due to anthropogenic interventions. Clustering of PYL and DTL populations shows ongoing gene flow through the mainstream. The recent hydrological alterations and overfishing are major factors shaping the current genetic structure. These results can be helpful for effective management and sustainable conservation of E. bambusa populations.
Keywords:Elopichthys bambusa  Yangtze  Population genetics  Microsatellite
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号