首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of cold air inhalation on core temperature in exercising subjects under heat stress
Authors:Geladas, N.   Banister, E. W.
Affiliation:School of Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.
Abstract:
Whether increasing respiratory heat loss (RHL) during exercise under heat stress can contain elevation of rectal temperature (Tre) was examined. Eight men cycled twice at 45-50% their maximum work rate until exhaustion at ambient temperature and relative humidity of 38 degrees C and 90-95%, respectively. They inspired either cold (3.6 degrees C) or ambient air in random sequence. When subjects breathed cold air during 23 min of exercise, a ninefold increase in RHL was observed vs. similar work during hot air inhalation (32.81 vs. 3.46 W). Respiratory frequency (f) and rate of rise in Tre decreased significantly (P less than or equal to 0.004 and P less than or equal to 0.002, respectively). The rise in skin temperature in each inhalant gas condition was accompanied by a parallel almost equal increase in core temperature above basal (delta Tre) for equivalent gains in skin temperature. The increase in tidal volume and decreased f in the cold condition allowed more effective physical conditioning of cold inspirate gas in the upper airways and aided RHL. Cold air inhalation also produced a significant (P less than or equal to 0.05) decrease in heart rate vs. hot air inhalation in the final stages of exercise. Insignificant changes in O2 consumption and total body fluid loss were found. These data show that cold air inhalation during exercise diminishes elevation of Tre and suggest that both the intensity and duration of work can thus be extended. The importance of the physical exchange of heat energy and any physiological mechanisms induced by the cold inspirate in producing the changes is undetermined.
Keywords:
点击此处可从《Journal of applied physiology》浏览原始摘要信息
点击此处可从《Journal of applied physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号