首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Choose Your Weaponry: Selective Storage of a Single Toxic Compound,Latrunculin A,by Closely Related Nudibranch Molluscs
Authors:Karen L Cheney  Andrew White  I Wayan Mudianta  Anne E Winters  Michelle Quezada  Robert J Capon  Ernesto Mollo  Mary J Garson
Institution:1. School of Biological Sciences, The University of Queensland, Brisbane QLD 4072, Australia;2. School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia;3. Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia;4. Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy;University of New South Wales, AUSTRALIA
Abstract:Natural products play an invaluable role as a starting point in the drug discovery process, and plants and animals use many interesting biologically active natural products as a chemical defense mechanism against predators. Among marine organisms, many nudibranch gastropods are known to derive defensive metabolites from the sponges they eat. Here we investigated the putative sequestration of the toxic compound latrunculin A—a 16-membered macrolide that prevents actin polymerization within cellular processes—which has been identified from sponge sources, by five closely related nudibranch molluscs of the genus Chromodoris. Only latrunculin A was present in the rim of the mantle of these species, where storage reservoirs containing secondary metabolites are located, whilst a variety of secondary metabolites were found in their viscera. The species studied thus selectively accumulate latrunculin A in the part of the mantle that is more exposed to potential predators. This study also demonstrates that latrunculin-containing sponges are not their sole food source. Latrunculin A was found to be several times more potent than other compounds present in these species of nudibranchs when tested by in vitro and in vivo toxicity assays. Anti-feedant assays also indicated that latrunculin A was unpalatable to rock pool shrimps, in a dose-dependent manner. These findings led us to propose that this group of nudibranchs has evolved means both to protect themselves from the toxicity of latrunculin A, and to accumulate this compound in the mantle rim for defensive purposes. The precise mechanism by which the nudibranchs sequester such a potent compound from sponges without disrupting their own key physiological processes is unclear, but this work paves the way for future studies in this direction. Finally, the possible occurrence of both visual and chemosensory Müllerian mimicry in the studied species is discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号