Chloroplast Hsp93 Directly Binds to Transit Peptides at an Early Stage of the Preprotein Import Process |
| |
Authors: | Po-Kai Huang Po-Ting Chan Pai-Hsiang Su Lih-Jen Chen Hsou-min Li |
| |
Affiliation: | Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan |
| |
Abstract: | Three stromal chaperone ATPases, cpHsc70, Hsp90C, and Hsp93, are present in the chloroplast translocon, but none has been shown to directly bind preproteins in vivo during import, so it remains unclear whether any function as a preprotein-translocating motor and whether they have different functions during the import process. Here, using protein crosslinking followed by ionic detergent solubilization, we show that Hsp93 directly binds to the transit peptides of various preproteins undergoing active import into chloroplasts. Hsp93 also binds to the mature region of a preprotein. A time course study of import, followed by coimmunoprecipitation experiments, confirmed that Hsp93 is present in the same complexes as preproteins at an early stage when preproteins are being processed to the mature size. In contrast, cpHsc70 is present in the same complexes as preproteins at both the early stage and a later stage after the transit peptide has been removed, suggesting that cpHsc70, but not Hsp93, is important in translocating processed mature proteins across the envelope.Most chloroplast proteins are encoded by the nuclear genome as higher Mr preproteins that are fully synthesized in the cytosol before being imported into the chloroplast. The import process is initiated by binding of the N-terminal transit peptide of the preprotein to the translocon at the outer envelope membrane of chloroplasts (TOC) complex, in which Toc159 and Toc34 function as receptors and Toc75 is the outer membrane channel. This step is followed by binding of the transit peptide to the translocon at the inner envelope membrane of chloroplasts (TIC) machinery, the central components of which include the Tic20/Tic56/Tic100/Tic214 channel complex and Tic110. Tic110 functions as the stromal receptor for transit peptides and also as a scaffold for tethering other translocon components (for reviews, see Li and Chiu, 2010; Shi and Theg, 2013; Paila et al., 2015). The actual translocation of the bound preproteins across the envelope is powered by hydrolysis of ATP in the stroma (Pain and Blobel, 1987; Theg et al., 1989), and it is therefore assumed that some stromal ATPase motor proteins bind the preproteins as they emerge from the inner membrane and use the energy of ATP hydrolysis to translocate the preproteins across the envelope into the stroma.Three stromal ATPases have been identified in the translocon complex: cpHsc70 (chloroplast heat shock cognate protein 70 kD), Hsp90C (chloroplast heat shock protein 90), and Hsp93/ClpC (93-kD heat shock protein). Hsp93, the first to be identified, belongs to the Hsp100 subfamily of AAA+ proteins (ATPases associated with various cellular activities) and was detected in coimmunoprecipitation experiments in complexes containing other translocon components and preproteins undergoing import (Akita et al., 1997; Nielsen et al., 1997; Chou et al., 2003; Rosano et al., 2011). In Arabidopsis (Arabidopsis thaliana), Hsp93 exists as two isoforms encoded by the genes HSP93III and HSP93V. Removal of the more abundant Hsp93V results in protein import defects, while double knockout of the two genes causes lethality (Constan et al., 2004; Kovacheva et al., 2007; Chu and Li, 2012; Lee et al., 2015). Purified recombinant Hsp93III can bind to the transit peptide of pea (Pisum sativum) ferredoxin-NADP+ reductase in vitro (Rosano et al., 2011). In addition, the N-terminal domain of Hsp93 is critical both for its in vivo functions and its association with chloroplast membranes and Tic110, suggesting that one of the major functions of Hsp93 requires it to be localized at the envelope with Tic110 (Chu and Li, 2012). However, because many prokaryotic Hsp100 family proteins function as the regulatory components of the Clp proteases (Kress et al., 2009; Nishimura and van Wijk, 2015), and, in Arabidopsis, some Clp proteolytic core components have also been found at the envelope fraction, it has been proposed that Hsp93 is involved in degradation of misfolded or damaged proteins at the envelope (Sjögren et al., 2014). However, whether the Clp proteolytic core can form a stable complex with Hsp93 in higher plant chloroplasts remains to be shown.In mitochondria and the endoplasmic reticulum, protein import is driven by the Hsp70 family of proteins. In chloroplasts, accumulating evidence also supports that Hsp70 is important for chloroplast protein import. Purified recombinant Hsp70 can bind in vitro to the transit peptide of the small subunit of RuBP carboxylase preprotein (prRBCS; Ivey et al., 2000). Stromal Hsp70 can be coimmunoprecipitated with preproteins undergoing import and with other translocon components, and mutations resulting in reduced or altered stromal Hsp70 activity cause protein import defects (Shi and Theg, 2010; Su and Li, 2010). Recently, it has been shown, in moss, that increasing the Km for Hsp70 ATP hydrolysis results in an increased Km for ATP usage in chloroplast protein import, indicating that stromal Hsp70 is indeed one of the proteins supplying ATP-derived energy to power import (Liu et al., 2014). Finally, stromal Hsp90C has been shown to be part of active translocon complexes in coimmunoprecipitation experiments (Inoue et al., 2013). As further evidence that Hsp90 is important for protein import into chloroplasts, the Hsp90 ATPase activity inhibitor radicicol reversibly inhibits the import of preproteins into chloroplasts (Inoue et al., 2013).Presence of the three ATPases in the translocon was demonstrated by coimmunoprecipitation after solubilization of chloroplast membranes under conditions that preserve the large membrane protein complexes, either by solubilization with nonionic detergents or by treating chloroplasts with crosslinkers that link all proteins in a complex together (Akita et al., 1997; Nielsen et al., 1997; Shi and Theg, 2010; Su and Li, 2010; Inoue et al., 2013). These complexes contain translocon components that directly bind to preproteins, and also other proteins that are associated with these translocon components but have no direct contacts with the preproteins. For example, Nielsen et al. (1997) demonstrated the presence of Hsp93 in the translocon by binding of prRBCS to isolated pea chloroplasts and then solubilization of chloroplast membranes with the nonionic detergent decylmaltoside. Under these conditions, an anti-Hsp93 antibody specifically immunoprecipitated Hsp93 together with Toc159, Toc75, Toc34, Tic110, and prRBCS (Nielsen et al., 1997). The result showed that Hsp93 is in the same complexes with these proteins but did not provide information whether Hsp93 directly binds to them. It is possible that Hsp93 only has direct contacts with, for example, Tic110, which then binds to prRBCS. Direct binding, in particular to the transit peptide region, would provide strong evidence that an ATPase functions as a protein translocating motor, rather than in assisting the assembly of other translocon components or in the folding or degradation of imported proteins. Furthermore, if all three ATPases were found to be involved in preprotein translocation, it would be important to understand how they work together; for example, whether they preferentially bind different preproteins, bind to different regions of a preprotein, or act at different stages of the import process.Here, we examined whether Hsp93 can directly bind to preproteins undergoing import into chloroplasts, and compared the timing of the binding of Hsp93 and cpHsc70 to the preproteins. We used isolated pea chloroplasts, rather than isolated Arabidopsis chloroplasts, because pea chloroplasts exhibit more robust import ability (Fitzpatrick and Keegstra, 2001). Various crosslinkers that react with cysteines were then used to achieve more specific crosslinkings, followed by solubilization with the ionic detergent lithium dodecyl sulfate (LDS) to thoroughly solubilize chloroplast membranes and to disrupt noncovalent protein-protein interactions. Our results show that Hsp93 directly binds to preproteins undergoing import. Import time course experiments further revealed that Hsp93 functions primarily during the early stage of import, whereas cpHsc70 associates with substrates being imported at both the early stage and a later stage after transit peptide removal. |
| |
Keywords: | |
|
|