首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Toll-like receptor-4 regulation of hepatic Cyp3a11 metabolism in a mouse model of LPS-induced CNS inflammation
Authors:Goralski Kerry B  Abdulla Dalya  Sinal Christopher J  Arsenault Andre  Renton Kenneth W
Institution:Dept. of Pharmacology, Dalhousie Univ., Rm. 5C Sir Charles Tupper Bldg., 5850 College St., Halifax, Nova Scotia, Canada B3H 1X5.
Abstract:Central nervous system (CNS) infection and inflammation severely reduce the capacity of cytochrome P-450 metabolism in the liver. We developed a mouse model to examine the effects of CNS inflammation on hepatic cytochrome P-450 metabolism. FVB, C57BL/6, and C3H/HeouJ mice were given Escherichia coli LPS (2.5 microg) by intracerebroventricular (ICV) injection. The CNS inflammatory response was confirmed by the elevation of TNF-alpha and/or IL-1beta proteins in the brain. In all mouse strains, LPS produced a 60-70% loss in hepatic Cyp3a11 expression and activity compared with saline-injected controls. Adrenalectomy did not prevent the loss in Cyp3a11 expression or activity, thereby precluding the involvement of the hypothalamic-adrenal-pituitary axis. Endotoxin was detectable (1-10 ng/ml) in serum between 15 and 120 min after ICV dosing of 2.5 microg LPS. Peripheral administration of 2.5 microg LPS by intraperitoneal injection produced similar serum endotoxin levels and a similar loss (60%) in Cyp3a11 expression and activity in the liver. The loss of Cyp3a11 in response to centrally or peripherally administered LPS could not be evoked in Toll-like receptor-4 (TLR4)-mutant (C3H/HeJ) mice, indicating that TLR4 signaling pathways are directly involved in the enzyme loss. In summary, we conclude that LPS is transferred from the brain to the circulation in significant quantities in a model of CNS infection or inflammation. Subsequently, LPS that has reached the circulation stimulates a TLR4-dependent mechanism in the periphery, evoking a reduction in Cyp3a11 expression and metabolism in the liver.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号