首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical and experimental investigations of pulsatile blood flow pattern through a dysfunctional mechanical heart valve
Authors:O. Smadi  I. Hassan  P. Pibarot  L. Kadem
Affiliation:1. Department of Mechanical Engineering, CFD Laboratory, McGill University, 688 Sherbrooke Street West, Montreal, QC H3A 2S6, Canada;2. Newmerical Technologies International, 680 Sherbrooke Street West, Montreal, QC H3A 2M7, Canada
Abstract:
Around 250,000 heart valve replacements are performed every year around the world. Due their higher durability, approximately 2/3 of these replacements use mechanical prosthetic heart valves (mainly bileaflet valves). Although very efficient, these valves can be subject to valve leaflet malfunctions. These malfunctions are usually the consequence of pannus ingrowth and/or thrombus formation and represent serious and potentially fatal complications. Hence, it is important to investigate the flow field downstream of a dysfunctional mechanical heart valve to better understand its impact on blood components (red blood cells, platelets and coagulation factors) and to improve the current diagnosis techniques. Therefore, the objective of this study will be to numerically and experimentally investigate the pulsatile turbulent flow downstream of a dysfunctional bileaflet mechanical heart valve in terms of velocity field, vortex formation and potential negative effect on blood components. The results show that the flow downstream of a dysfunctional valve was characterized by abnormally elevated velocities and shear stresses as well as large scale vortices. These characteristics can predispose to blood components damage. Furthermore, valve malfunction led to an underestimation of maximal transvalvular pressure gradient, using Doppler echocardiography, when compared to numerical results. This could be explained by the shifting of the maximal velocity towards the normally functioning leaflet. As a consequence, clinicians should try, when possible, to check the maximal velocity position not only at the central orifice but also through the lateral orifices. Finding the maximal velocity in the lateral orifice could be an indication of valve dysfunction.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号