首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hansenula polymorpha Vam7p is required for macropexophagy
Authors:Stevens Patricia  Monastyrska Iryna  Leão-Helder Adriana N  van der Klei Ida J  Veenhuis Marten  Kiel Jan A K W
Institution:Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, P.O. Box 14, 9751 AA Haren, The Netherlands.
Abstract:We have analyzed the functions of two vacuolar t-SNAREs, Vam3p and Vam7p, in peroxisome degradation in the methylotrophic yeast Hansenula polymorpha. A Hp-vam7 mutant was strongly affected in peroxisome degradation by selective macropexophagy as well as non-selective microautophagy. Deletion of Hp-Vam3p function had only a minor effect on peroxisome degradation processes. Both proteins were located at the vacuolar membrane, with Hp-Vam7p also having a partially cytosolic location. Previously, in baker's yeast Vam3p and Vam7p have been demonstrated to be components of a t-SNARE complex essential for vacuole biogenesis. We speculate that the function of this complex in macropexophagy includes a role in membrane fusion processes between the outer membrane layer of sequestered peroxisomes and the vacuolar membrane. Our data suggest that Hp-Vam3p may be functionally redundant in peroxisome degradation. Remarkably, deletion of Hp-VAM7 also significantly affected peroxisome biogenesis and resulted in organelles with multiple, membrane-enclosed compartments. These morphological defects became first visible in cells that were in the mid-exponential growth phase of cultivation on methanol, and were correlated with accumulation of electron-dense extensions that were connected to mitochondria.
Keywords:Autophagy  Peroxisome  Pexophagy  Selective organelle degradation  SNARE  Yeast
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号