Expression of an active, monomeric catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase (PDE5) |
| |
Authors: | Fink T L Francis S H Beasley A Grimes K A Corbin J D |
| |
Affiliation: | Department of Molecular Physiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA. |
| |
Abstract: | Phosphodiesterases (PDEs) comprise a superfamily of phosphohydrolases that degrade 3',5'-cyclic nucleotides. All known mammalian PDEs are dimeric, but the functional significance of dimerization is unknown. A deletion mutant of cGMP-binding cGMP-specific PDE (PDE5), encoding the 357 carboxyl-terminal amino acids including the catalytic domain, has been generated, expressed, and purified. The K(m) of the catalytic fragment for cGMP (5.5 +/- 0. 51 microM) compares well with those of the native bovine lung PDE5 (5.6 microM) and full-length wild type recombinant PDE5 (2 +/- 0.4 microM). The catalytic fragment and full-length PDE5 have similar IC(50) values for the inhibitors 3-isobutyl-1-methylxanthine (20 microM) and sildenafil (Viagra(TM))(4 nM). Based on measured values for Stokes radius (29 A) and sedimentation coefficient (2.9 S), the PDE5 catalytic fragment has a calculated molecular mass of 35 kDa, which agrees well with that predicted by amino acid content (43.3 kDa) and with that estimated using SDS-polyacrylamide gel electrophoresis (39 kDa). The combined data indicate that the recombinant PDE5 catalytic fragment is monomeric, and retains the essential catalytic features of the dimeric, full-length enzyme. Therefore, the catalytic activity of PDE5 holoenzyme requires neither interaction between the catalytic and regulatory domains nor interactions between subunits of the dimer. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|