首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chemical characterization of two extracts used in the determination of available soil nitrogen
Authors:B P Michrina  R H Fox  W P Piekielek
Institution:(1) Department of Agronomy, Pennsylvania State University, University Park, Pennsylvania, USA
Abstract:Summary Two soil extracts used for chemical indexes for N availability, 0.01M NaHCO3 and boiling 0.01M CaCl2, were analyzed in effort to learn more about the nature of the extracted organic matter (O.M.). The two extracts appeared to remove different fractions of the soil O.M. A study of five soils showed that the C/N value of the NaHCO3 extract (following decarbonation) was significantly higher than that of the total soil O.M.; while the C/N value in the boiling CaCl2 extract was not significantly different from that in the soil O.M. There was also significant variation in C/N values among soils for the boiling CaCl2 extract. The extracts of three soils were analyzed for apparent molecular weight distribution using gel filtration and the results compared to those for base-extracted humic substances. Almost all the molecules in the extracts had apparent molecular weights less than 21,000 daltons while 21 to 47% of the humic substances from the same soils (extracted with 0.5M NaOH) had molecular weights greater than 21,000 daltons. In the boiling CaCl2 extract, 78 to 87% of the humic substances had apparent molecular weights less than 1,000 daltons, whereas with the NaHCO3 extract, 42 to 83% of the humic substances were in the 1,000 to 21,000 dalton range. Forty-three to 92% of the N extracted by the NaHCO3 was in protein form, and 8 to 30% was ninhydrin-detectable. In the boiling CaCl2 extract 25 to 30% of the extracted N was ninhydrin-detectable. For the same 10 soils, ninhydrin-detectable N values of the boiling CaCl2 extract appeared closely related to greenhouse and field relative N uptake, while the ninhydrin-detectable N values of the NaHCO3 extract appeared unrelated to both. The protein N and protein in plus ninhydrin-detectable N values of the NaHCO3 extract were closely related to greenhouse relative N uptake only. The results of this study indicated that specific fractions of the soil O.M. were being extracted by the two solutions and that significant differences existed in the chemical nature of the two extracts. Paper No. 6175 of the J. Ser. of the Pennsylvania Agric. Exp. Stn. Authorized for publication Jan. 26, 1981.
Keywords:Humic substances  Molecular weight distribution  N availability index  Ninhydrindetectable N  Relative N uptake  Soil proteins
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号