首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A receptor-like binding macromolecule for 1 alpha, 25-dihydroxycholecalciferol in cultured mouse bone cells.
Authors:T L Chen  M A Hirst  D Feldman
Abstract:1alpha, 25-Dihydroxycholecalciferol (1,25-(OH)2D3), the active form of vitamin D, like other steroid hormones, initiates its action by binding to cytoplasmic receptors in target cells. Although the 1,25-(OH)2D3 receptor has been well studied in intestine, little information beyond sucrose gradient analyses is presently available from mammalian bone. We, therefore, employed primary cultures of mouse calvarial cells to characterize the mammalian receptor in bone. A hypertonic molybdate-containing buffer was found to protect receptor binding. On hypertonic sucrose gradients, the 1,25-(OH)2-3H]D3 binder sedimented at 3.2 S. Scatchard analysis of specific 1,25-(OH)23H]D3 binding sites at 0 degrees C yielded an apparent Kd of 0.26 nM and an Nmax of 75 fmol/mg of cytosol protein. Competitive binding experiments revealed the receptor to prefer 1,25-(OH)2D3 greater than 25-(OH)-D3 = 1 alpha-(OH)-D3 greater than 24R,25-(OH)2D3; vitamin D3, dihydrotachysterol, sex steroids, and glucocorticoids exhibited negligible binding. As shown in other systems, the receptor could be distinguished from a 25-(OH)-3H]D3 binder which sedimented at approximately 6 S. In summary, cultured mouse calvarial cells possess a macromolecule with receptor-like properties. This system appears to be an ideal model for the investigation of 1,25-(OH)2D3 receptor binding and action in mammalian bone.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号