首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Decreased transport of D-glucose and L-alanine across brush-border membrane vesicles from small intestine of rats treated with mitomycin C
Authors:M Mizuno  H Yoshino  M Hashida  H Sezaki
Abstract:To elucidate the mechanisms underlying the dysfunctions of intestinal absorption induced by antitumor drugs, the effect of pretreatment with mitomycin C on sodium gradient-dependent D-glucose and L-alanine transports was studied in rat brush-border membrane vesicles. 24, 48, 96, or 120 h following a single intravenous injection of mitomycin C, brush-border membrane vesicles were prepared from rat small-intestines. The uptake of D-glucose and L-alanine was shown to be Na+ gradient-dependent even in the case of vesicles obtained from mitomycin C-treated rats, but uptake rates measured at 15 s and magnitude of overshooting effect in uptake of both solutes were decreased in vesicles maximally from 48 h mitomycin C-treated rats. The rate of D-glucose uptake calculated at 15 s recovered to the control level in vesicles prepared at 96 h and 120 h after mitomycin C-treatment, indicating that the effect of mitomycin C on Na+ gradient-dependent D-glucose transport would be fully reversible. Tracer exchange experiments under Na+ and D-glucose equilibrated conditions indicated that the Na+/D-glucose transporters were similarly operative in the vesicles from control and 48 h mitomycin C-treated rats. Rates of 22Na+ uptake measured at 15 s in vesicles from 48 h mitomycin C-treated rats, however, were increased. The increased permeability to Na+ might bring about a more rapid dissipation of the Na+ gradient in these vesicles and this would secondarily cause the decrease in Na+-dependent D-glucose uptake in vesicles from mitomycin C-treated rats.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号