首页 | 本学科首页   官方微博 | 高级检索  
     


Intraspecific divergence in the lateral line system in the nine-spined stickleback (Pungitius pungitius)
Authors:Trokovic N  Herczeg G  McCairns R J Scott  Ab Ghani N Izza  Merilä J
Affiliation:Department of Biosciences, Ecological Genetics Research Unit, University of Helsinki, Helsinki, Finland.
Abstract:The mechanosensory lateral line system of fishes is an important organ system conveying information crucial to individual fitness. Yet, our knowledge of lateral line diversity is almost exclusively based on interspecific studies, whereas intraspecific variability and possible population divergence have remained largely unexplored. We investigated lateral line system variability in four marine and five pond populations of nine-spined stickleback (Pungitius pungitius). We found significant differences in neuromast number between pond and marine fish. In particular, three of seventeen lateral line regions (viz. caudal peduncle superficial neuromasts; canal neuromasts from the anterior trunk and caudal peduncle) showed strong divergence between habitats. Similar results were obtained with laboratory-reared individuals from a subset of populations, suggesting that the patterns found in nature likely have a genetic basis. Interestingly, we also found habitat-dependent population divergence in neuromast variability, with pond populations showing greater heterogeneity than marine populations, although only in wild-caught fish. A comparison of neutral genetic (F(ST)) and phenotypic (P(ST)) differentiation suggested that natural selection is likely associated with habitat-dependent divergence in neuromast counts. Hence, the results align with the conclusion that the mechanosensory lateral line system divergence among marine and pond nine-spined sticklebacks is adaptive.
Keywords:geographic variation  lateral line  neuromast  PST  Pungitius pungitius  sensory system
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号