首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Homeostatic control of uridine and the role of uridine phosphorylase: a biological and clinical update
Authors:Pizzorno Giuseppe  Cao Deliang  Leffert Janine J  Russell Rosalind L  Zhang Dekai  Handschumacher Robert E
Institution:Division of Biochemistry, Department of Pharmaceutical Biosciences, University of Uppsala, Box 578, S-751 23, Uppsala, Sweden. fardin.hosseinpour@farmbio.uu.se
Abstract:Both a 25-hydroxylation and a 1alpha-hydroxylation are necessary for the conversion of vitamin D(3) into the calcium-regulating hormone 1alpha,25-dihydroxyvitamin D(3). According to current knowledge, the hepatic mitochondrial cytochrome P450 (CYP) 27A and microsomal CYP2D25 are able to catalyze the former bioactivation step. Substantial 25-hydroxylase activity has also been demonstrated in kidney. This paper describes the molecular cloning and characterization of a microsomal vitamin D(3) 25- and 1alpha-hydroxylase in kidney. The enzyme purified from pig kidney and the recombinant enzyme expressed in COS cells catalyzed 25-hydroxylation of vitamin D(3) and 1alpha-hydroxyvitamin D(3) and, in addition, 1alpha-hydroxylation of 25-hydroxyvitamin D(3). The cDNA encodes a protein of 500 amino acids. Both the DNA sequence and the deduced peptide sequence of the renal enzyme are homologous with those of the hepatic vitamin D(3) 25-hydroxylase CYP2D25. Genomic Southern blot analysis suggested the presence of a single gene for CYP2D25 in the pig. Immunohistochemistry experiments indicated that CYP2D25 is expressed almost exclusively in the cells of cortical proximal tubules. The expression of CYP2D25 in kidney, but not in liver, was much higher in the adult pig than in the newborn. These findings indicate a tissue-specific developmental regulation of CYP2D25. The results from the current and previous studies on renal vitamin D hydroxylations imply that CYP2D25 has a biological role in kidney.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号