首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of the particulate nitrite oxidase and its component activities from the chemoautotroph Nitrobacter agilis
Authors:Joseph C O'Kelley  George E Becker and Alvin Nason
Institution:

The McCollum-Pratt Institute, The Johns Hopkins University, Baltimore, Md. 21218, U.S.A.

Abstract:1. Difference spectra, at room and liquid N2 temperatures, of S2O42−-, and NO2-reduced intact cells and cell-free preparations of Nitrobacter agilis demonstrated the presence of cytochromes of the c- and a-types. Reduction of cytochromes by succinate, and to a limited extent, by NADPH also occurred, provided KCN (0.1 mM) was also present.

2. A particulate, heat-labile nitrite oxidase having an absolute requirement for O2 was prepared from N. agilis cells using sonic oscillation and differential centrifugation. The particles also possessed NADH oxidase, succinoxidase, formate oxidase and traces of NADPH oxidase activity. The stoichiometry of the nitrite oxidase reaction approached the theoretical value of 2 moles of NO2 consumed per mole of O2 consumed. The pH optimum of the nitrite oxidase system shifted to progressively more alkaline values as the NO2 concentration was increased, changing from a pH value of 6.8 at 0.6 mM KNO2 to pH 8.0 at 0.01 M KNO2 with apparent Km's of 0.2 and 1.2 mM NO2, respectively. Computations of the HNO2 concentrations present under the above conditions showed an approx. 500-fold greater affinity for HNO2 which was independent of pH, suggesting the involvement of HNO2 as both a substrate and an inhibitor (at higher concentrations) of the nitrite oxidase system. The marked inhibition by NaN3, NaCN and Na2S, as well the light-reversible inhibition by CO, indicated the presence of cytochrome oxidase which was subsequently characterized. NO2 proved to be a competitive inhibitor of the nitrite oxidase system.

3. The particulate preparation also possessed a heat-labile nitrite-cytochrome c reductase activity which was energy independent and routinely measured under anaerobic conditions. As in the case of nitrite oxidase, the affinity of the enzyme for NO3 increased as the pH was lowered, but the pH optimum remained unaffected. In terms of calculated HNO2 concentration an approximately constant Km of about 0.2 μM was estimated at the several pH's examined. The inhibition by NO3 was shown to be competitive. The marked sensitivity of the reductase to several metal-binding agents implicated a metal component in the electron transport chain at the site prior to cytochrome c.

4. The membrane-like composition of the nitrite oxidase system is indicated.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号