首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Adenosine triphosphate (ATP) hydrolysis promoted by cobalt(III).Participation of polynuclear metal complexes
Authors:Markus Hediger  Ronald M Milburn
Institution:Department of Chemistry, Boston University USA
Abstract:Complex formation between ATP (adenosine 5′-triphosphate) and tn2COIII(aq) (tn = trimethylenediamine) and resulting hydrolysis of the ATP to ADP (adenosine 5′-diphosphate), AMP (adenosine 5′-monophosphate), PPi (pyrophosphate), and Pi (orthophosphate) have been examined by means of 31P nmr. With ATP ~0.1 M and tn2CoIII(aq) up to 0.3 M, complex formation was promoted by equilibrating solutions for a period at pH 4, after which hydrolysis was allowed to proceed at each of several pHs in the range 5 to 9 prior to quenching by addition of strong base. With ATP 0.01 M and tn2CoIII(aq) up to 0.08 M, the above procedure was followed in some cases; in other experiments the pH of each ATP/tn2CoIII(aq) solution was adjusted immediately to a value in the range 5 to 9 with the remainder of the procedure as before. In most cases the hydrolysis was at 25°C, but temperature dependence was also examined. The integrals for the β-phosphorus resonance have been used to analyze for ATP in the quenched solutions; independent measurements of ATP by an enzyme/spectrophotometric method (Bergmeyer) gave similar results. Cobalt to ATP molar ratios up to 1 produce tn2CoIIIATP as the predominant ATP complex; this 1:1 complex shows no detectable acceleration in hydrolysis compared to free ATP. Cobalt to ATP molar ratios of ?1 lead to complexes of type (tn2CoIII)2ATP and (tn2CoIII)3ATP, which exhibit greatly enhanced reactivity towards ATP hydrolysis. At a 2:1 molar ratio (0.1 or 0.01 M ATP), the enhancement is rate is ~105 at pH 7 where the rate is a maximum (comparison for 25°C); at higher molar ratios the rate enhancements are even greater. The results support the view that effective metal ion catalysis of ATP hydrolysis requires formation of reactive species involving more than one metal ion per ATP.
Keywords:ATP  adenosine 5′-triphosphate  ADP  adenosine 5′-diphosphate  AMP  adenosine 5′-monophosphate  PGA  3-phosphoglyceric acid  PGK  3-phosphoglyceric phosphokinase  GAPDN  glyceraldehyde-3-phosphate dehydrogenase  Address reprint requests to Dr  Ronald M  Milburn  Department of Chemistry  Boston University  685 Commonwealth Avenue  Boston  MA 02215
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号