Dioecy and the evolution of sex ratios in ants |
| |
Authors: | Diane C. Wiernasz Blaine J. Cole |
| |
Affiliation: | Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA |
| |
Abstract: | Split sex ratios, when some colonies produce only male and others only female reproductives, is a common feature of social insects, especially ants. The most widely accepted explanation for split sex ratios was proposed by Boomsma and Grafen, and is driven by conflicts of interest among colonies that vary in relatedness. The predictions of the Boomsma–Grafen model have been confirmed in many cases, but contradicted in several others. We adapt a model for the evolution of dioecy in plants to make predictions about the evolution of split sex ratios in social insects. Reproductive specialization results from the instability of the evolutionarily stable strategy (ESS) sex ratio, and is independent of variation in relatedness. We test predictions of the model with data from a long-term study of harvester ants, and show that it correctly predicts the intermediate sex ratios we observe in our study species. The dioecy model provides a comprehensive framework for sex allocation that is based on the pay-offs to the colony via production of males and females, and is independent of the genetic variation among colonies. However, in populations where the conditions for the Boomsma–Grafen model hold, kin selection will still lead to an association between sex ratio and relatedness. |
| |
Keywords: | split sex ratios dioecy ants sex allocation |
|
|