首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Schisandrin B stereoisomers protect against hypoxia/reoxygenation-induced apoptosis and inhibit associated changes in Ca2+-induced mitochondrial permeability transition and mitochondrial membrane potential in H9c2 cardiomyocytes
Authors:Chiu Po Yee  Luk Ka Fai  Leung Hoi Yan  Ng Ka Ming  Ko Kam Ming
Institution:Department of Biochemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China.
Abstract:The effects of schisandrin B stereoisomers, (+/-)gamma-schisandrin (+/-)gamma-Sch] and (-)schisandrin B (-)Sch B], on hypoxia/reoxygenation-induced apoptosis were investigated in H9c2 cardiomyocytes. Changes in cellular reduced glutathione (GSH) levels, Ca(2+)-induced mitochondrial permeability transition (MPT), and mitochondrial membrane potential (Deltapsi(m)) values, were examined in (+/-)gamma-Sch-pretreated and (-)Sch B-pretreated cells, without or with hypoxia/reoxygenation challenge. The (+/-)gamma-Sch and (-)Sch B (2.5-5.0 microM) pretreatments protected against hypoxia/reoxygenation-induced apoptosis of H9c2 cells in a concentration-dependent manner, with (-)Sch B being more potent. The degrees of protection decreased, however, at the higher drug concentrations of 7.5 microM in both (+/-)gamma-Sch-pretreated and (-)Sch B-pretreated cells. The anti-apoptotic effects of the drugs were further evidenced by the suppression of hypoxia/reoxygenation-induced mitochondrial cytochrome c release and the subsequent cleavage of caspase 3 and poly-ADP-ribose polymerase after (-)Sch B pretreatment. Both (+/-)gamma-Sch and (-)Sch B pretreatments increased GSH levels in H9c2 cells, with (-)Sch B being more potent. Hypoxia/reoxygenation challenge caused a depletion in cellular GSH and the cytoprotection afforded by (+/-)gamma-Sch/(-)Sch B was associated with enhancement of cellular GSH in H9c2 cells, as compared to the drug-unpretreated control. Whereas hypoxia/reoxygenation challenge increased the extent of Ca(2+)-induced MPT pore opening and decreased Deltapsi(m) in H9c2 cardiomyocytes, cytoprotection against hypoxia/reoxygenation-induced apoptosis afforded by (+/-)gamma-Sch/(-)Sch B pretreatments was associated with a decreased sensitivity to Ca(2+)-induced MPT and an increased Deltapsi(m) in both unchallenged and challenged cells, as compared to the respective drug-unpretreated controls. The degrees of protection against apoptosis correlated negatively with the extents of Ca(2+)-induced MPT (r=-0.615, P<0.01) and positively with the values of Deltapsi(m) (r=0.703, P<0.01) in (+/-)gamma-Sch/(-)Sch B-pretreated and hypoxia/reoxygenation challenged cells. The results indicate that (+/-)gamma-Sch/(-)Sch B pretreatment protected against hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes and that the cytoprotection afforded by (+/-)gamma-Sch/(-)Sch B may at least in part be mediated by a decrease in cellular sensitivity to Ca(2+)-induced MPT, which may in turn result from enhancement of cellular GSH levels by drug pretreatments.
Keywords:Schisandrin B  Hypoxia/reoxygenation  Mitochondrial permeability transition  Mitochondrial membrane potential  H9c2  Cardiomyocytes
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号