首页 | 本学科首页   官方微博 | 高级检索  
     


Codes, operations, measurements and neural networks
Authors:Lábos E
Affiliation:United Research Organization of Hungarian Academy of Sciences and Semmelweis Medical University, Budapest. labos@ana1.sote.hu
Abstract:
Numerous neural codes and primary neural operations (logical and arithmetical ones, mappings, transformations) were listed [e.g. Perkel, D., Bullock, T.H., 1968. Neurosci. Res. Program Bull 6, 221-348] during the past decades. None of them is ubiquitous or universal. In reality neural operations take place in continuous time and working with unreliable elements, but they still can be simulated with synchronized discrete time scales and chaotic models. Here, a possible neural mechanism, called 'measure like' code is introduced and examined. The neurons are regarded as measuring devices, dealing with 'measures', more or less in mathematical sense. The subadditivity--eminent property of measures--may be implemented with neuronal refractoriness and such synapses operate like particle counters with dead time. This hypothetical code is neither ubiquitous, nor universal, e.g. temporal summation (multiplication) causes just the opposite phenomenon, the supra-additivity also with respect to the number of spikes (anti-measures). This is a cause of more difficult neural implementation of OR gate, than that of the AND. Possibilities for transitional mechanisms (e.g. between traditional logical gates, etc.) are stressed here. Parameter tuning might change either code or operation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号