Novel non-isotopic method for the localization of receptors in tissue sections. |
| |
Authors: | L Desnoyers R A Simonette R L Vandlen B M Fendly |
| |
Affiliation: | Departments of Cell Biology and Technology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA. desnoyer@gene.com |
| |
Abstract: | We describe a novel fluorescent method for the detection of receptors for chimeric proteins in tissue sections. The technique was developed using a recombinant human insulin-like growth factor (IGF-1) chimera, bearing six additional histidine residues at the carboxy-terminal end (IGF-1-His). We demonstrated that dehydration of the tissue sections was detrimental for binding and that its prevention dramatically increased sensitivity. The specificity of IGF-1-His interaction was shown by gradual abolition of the fluorescent signal in the presence of increasing concentrations of IGF-1. Combining immunofluorescence with in situ ligand binding, we showed that IGF-1-His binding corresponded to the IGF-1 receptor (IGFR-1) distribution in human fetal kidney. Moreover, incubation of the tissue sections with an anti-IGFR-1 blocking antibody abolished IGF-1-His binding, demonstrating that the interaction was mediated by the IGFR-1. The method was also used to localize the IGFR-1 in E18 rat embryo sagittal sections. The IGF-1-His binding pattern was observed in brain, cartilage, lung, skin, heart, diaphragm, and tongue, and paralleled the previously reported IGFR-1 distribution. We believe that this new non-isotopic in situ ligand binding method will facilitate rapid and accurate localization of receptors in tissue sections. |
| |
Keywords: | |
|
|