Affiliation: | (1) Agricultural Research Organization, Gilat Research Center, D.N. Negev 2 85280, Israel;(2) Agricultural Research Organization, Bet Dagan, Israel P.O. Box 6 50250, Israel;(3) Dept. of Biotechnology & Environmental Sciences, Tel Hai Academic College, Upper Galilee, 12210, Israel;(4) Appalachian Farming Systems Research Center, Agricultural Research Service, United States Department of Agriculture, Beaver, WV 25813-9423, USA |
Abstract: | Sorption of Cu2+ and Zn2+ to the plasma membrane (PM) of wheat root (Triticum aestivum L cv. Scout 66) vesicles was measured at different pH values and in the presence of organic acids and other metals. The results were analyzed using a Gouy-Chapman-Stem model for competitive sorption (binding and electrostatic attraction) to a negative binding site. The binding constants for the two investigated cations as evaluated from the sorption experiments were 5 M–1 for Zn2+ and 400 M–1 for Cu2+. Thus, the sorption affinity of Cu2+ to the PM is considerably larger than that of Ca2+, Mg2+ or Zn2+. The greater binding affinity of Cu2+ was confirmed by experiments in which competition with La3+ for sorption sites was followed. The amount of sorbed Cu2+ decreased with increasing K+, Ca2+, or La3+ concentrations, suggesting that all these cations competed with Cu2+ for sorption at the PM binding sites, albeit with considerable differences among these cations in effectiveness as competitors with Cu2+. The sorption of Cu2+ and Zn2+ to the PM decreased in the presence of citric acid or malic acid. Citric acid (as well as pH) affected the sorption of Cu2+ or Zn2+ to PM more strongly then did malic acid. |