首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetic and structural studies of the allosteric conformational changes induced by binding of cAMP to the cAMP receptor protein from Escherichia coli
Authors:Fic Ewelina  Polit Agnieszka  Wasylewski Zygmunt
Affiliation:Department of Physical Biochemistry, Faculty of Biotechnology, Jagiellonian University, Kraków, Poland.
Abstract:The cAMP receptor protein, allosterically activated by cAMP, regulates the expression of more than 100 genes in Escherichia coli. CRP is a homodimer of two-domain subunits. It has been suggested that binding of cAMP to CRP leads to a long-distance signal transduction from the N-terminal cAMP binding domain to the C-terminal domain of the protein responsible for interaction with specific sequences of DNA. In this study, the stopped-flow and time-resolved fluorescence lifetime measurements were used to observe the kinetics of the distance changes between the N-terminal and C-terminal domain of CRP induced by binding of cAMP to high-affinity binding sites. In these measurements, we used the constructed CRP heterodimer, which possesses a single Trp85 residue localized at the N-terminal domain of one CRP subunit, and fluorescently labeled by 1,5-I-AEDANS Cys178 localized at the C-terminal domain of the same subunit or at the opposite one. The F?rster resonance energy transfer method has been used to study the distance changes, induced by binding of cAMP, between Trp85 (fluorescence donor) and Cys178-AEDANS (fluorescence acceptor) in the CRP structure. The obtained results show that the allosteric transitions of CRP at micromolar cAMP concentrations follow the sequential binding model, in which binding of cAMP to high-affinity sites causes a 4 A movement of the C-terminal domain toward N-terminal domains of the protein, with kinetics faster than 2 ms, and CRP adopts the "closed" conformation. This fast process is followed by the slower reorientation of both CRP subunits.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号