首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress
Authors:Polte Thomas R  Eichler Gabriel S  Wang Ning  Ingber Donald E
Institution:Departments of Pathology and Surgery, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
Abstract:The mechanism by which vascular smooth muscle (VSM) cells modulate their contractility in response to structural cues from extracellular matrix remains poorly understood. When pulmonary VSM cells were cultured on increasing densities of immobilized fibronectin (FN), cell spreading, myosin light chain (MLC) phosphorylation, cytoskeletal prestress (isometric tension in the cell before vasoagonist stimulation), and the active contractile response to the vasoconstrictor endothelin-1 all increased in parallel. In contrast, MLC phosphorylation did not increase when suspended cells were allowed to bind FN-coated microbeads (4.5-microm diameter) or cultured on micrometer-sized (30 x 30 microm) FN islands surrounded by nonadhesive regions that support integrin binding but prevent cell spreading. Cell spreading and MLC phosphorylation also both decreased in parallel when the mechanical compliance of flexible FN substrates was raised. MLC phosphorylation was inhibited independently of cell shape when cytoskeletal prestress was dissipated using a myosin ATPase inhibitor in fully spread cells, whereas it increased to maximal levels when microtubules were disrupted using nocodazole in cells adherent to FN but not in suspended cells. These data demonstrate that changes in cell-extracellular matrix (ECM) interactions modulate smooth muscle cell contractility at the level of biochemical signal transduction and suggest that the mechanism underlying this regulation may involve physical interplay between ECM and the cytoskeleton, such that cell spreading and generation of cytoskeletal tension feed back to promote MLC phosphorylation and further increase tension generation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号