首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification and function of conformational dynamics in the multidomain GTPase dynamin
Authors:Saipraveen Srinivasan  Venkatasubramanian Dharmarajan  Dana Kim Reed  Patrick R Griffin  Sandra L Schmid
Institution:1. Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA;2. Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA
Abstract:Vesicle release upon endocytosis requires membrane fission, catalyzed by the large GTPase dynamin. Dynamin contains five domains that together orchestrate its mechanochemical activity. Hydrogen–deuterium exchange coupled with mass spectrometry revealed global nucleotide‐ and membrane‐binding‐dependent conformational changes, as well as the existence of an allosteric relay element in the α2S helix of the dynamin stalk domain. As predicted from structural studies, FRET analyses detect large movements of the pleckstrin homology domain (PHD) from a ‘closed’ conformation docked near the stalk to an ‘open’ conformation able to interact with membranes. We engineered dynamin constructs locked in either the closed or open state by chemical cross‐linking or deletion mutagenesis and showed that PHD movements function as a conformational switch to regulate dynamin self‐assembly, membrane binding, and fission. This PHD conformational switch is impaired by a centronuclear myopathy‐causing disease mutation, S619L, highlighting the physiological significance of its role in regulating dynamin function. Together, these data provide new insight into coordinated conformational changes that regulate dynamin function and couple membrane binding, oligomerization, and GTPase activity during dynamin‐catalyzed membrane fission.
Keywords:centronuclear myopathy  clathrin‐mediated endocytosis  hydrogen–  deuterium exchange  membrane fission  pleckstrin homology domain
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号