Correlation Networks from Flows. The Case of Forced and Time-Dependent Advection-Diffusion Dynamics |
| |
Authors: | Liubov Tupikina Nora Molkenthin Cristóbal López Emilio Hernández-García Norbert Marwan Jürgen Kurths |
| |
Affiliation: | 1Potsdam Institute for Climate Impact Research, P.O. Box 601203, 14412 Potsdam, Germany;2Humboldt Universität zu Berlin, 10099 Berlin, Germany;3Department of Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany;4IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain;Tianjin University, CHINA |
| |
Abstract: | Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network’s structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet. |
| |
Keywords: | |
|
|