首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of Shortened Alkyl Chains on Solution‐Processable Small Molecules with Oxo‐Alkylated Nitrile End‐Capped Acceptors for High‐Performance Organic Solar Cells
Authors:Dan Deng  Yajie Zhang  Liu Yuan  Chang He  Kun Lu  Zhixiang Wei
Institution:1. National Center for Nanoscience and Technology, Beijing, China;2. University of Chinese Academy of Science, Beijing, China;3. Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
Abstract:Solution‐processable small molecules are significant for producing high‐performance bulk heterojunction organic solar cells (OSCs). Shortening alkyl chains, while ensuring proper miscibility with fullerene, enables modulation of molecular stacking, which is an effective method for improving device performance. Here, the design and synthesis of two solution‐processable small molecules based on a conjugated backbone with a novel end‐capped acceptor (oxo–alkylated nitrile) using octyl and hexyl chains attached to π–bridge, and octyl and pentyl chains attached to the acceptor is reported. Shortening the length of the widely used octyl chains improves self‐assembly and device performance. Differential scanning calorimetry and grazing incidence X‐ray diffraction results demonstrated that the molecule substituted by shorter chains shows tighter molecular stacking and higher crystallinity in the mixture with 6,6‐phenyl‐C71‐butyric acid methyl ester (PC71BM) and that the power conversion efficiency (PCE) of the OSC is as high as 5.6% with an open circuit voltage (Voc) of 0.87 V, a current density (Jsc) of 9.94 mA cm‐2, and an impressive filled factor (FF) of 65% in optimized devices. These findings provide valuable insights into the production of highly efficient solution‐processable small molecules for OSCs.
Keywords:organic solar cells  small molecules  alkyl chain effects  oxo‐alkylated nitrile  self‐assembly
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号