首页 | 本学科首页   官方微博 | 高级检索  
   检索      

轮藻假根中的平衡石在回转器水平回转时的运动(英文)
引用本文:蔡伟明,Markus Braun,Andreas Sievers.轮藻假根中的平衡石在回转器水平回转时的运动(英文)[J].分子细胞生物学报,1997(2).
作者姓名:蔡伟明  Markus Braun  Andreas Sievers
作者单位:中国科学院上海植物生理研究所,波恩大学植物研究所,波恩大学植物研究所 200032,Venusbergweg 22,D-53115 Bonn/Germany,Venusbergweg 22,D-53115 Bonn/Germany
摘    要:利用回转器重现了在TEXUS火箭抛物线飞行的微重力实验中轮藻假根内平衡石向假根基部方向的运动。在快速回转器上回转15 min时,假根中的平衡石复合体中心离假根顶端的距离比在原来沿重力方向生长的假根中的距离增加了60%。细胞松弛素D的实验证实平衡石的这种运动是和肌动蛋白丝相关,而且在重力场中作用于平衡石的向基力也是肌动蛋白丝产生的。因此回转器和细胞松弛素D的实验证实了在地球上,平衡石的位置取决于作用方向相反的重力和肌动蛋白丝作用力的动态平衡的假说。然后在快速回转器上,平衡石中心在一个新的位置上维持了30 min左右的稳定,也就是出现了一个新的动态平衡状态。这一新的状态是在原先的向着假根顶端的重力和向着假根基部的肌动蛋白丝作用力的平衡在回转器上被打破后再经约有15 min时达到的。更进一步的快速回转器实验还展示了可能因平衡石位置的这一变化而启动的肌动蛋白丝的再组织和由此产生的平衡石向假根顶端方向再转运的过程。快速和慢速回转器实验在这里的结果有差异,推测是和回转器上颗粒的振幅随回转器转速的增加而减小有关。加之,轮藻假根的单细胞性质,因此在假根处于回转轴上时,快速回转器是更适合这项模拟失重的研究。总之,在失重条件下平衡石和肌动蛋白丝的关系是可以利用回转器来研究的。

关 键 词:轮藻(假根)  平衡石  肌动蛋白丝  回转器(快速和慢速)  微重力

DISPLACEMENT OF STATOLITHS IN CHARA RHIZOIDS DURING HORIZONTAL ROTATION ON CLINOSTATS
CAI Wei Ming Markus Braun Andreas Sievers.DISPLACEMENT OF STATOLITHS IN CHARA RHIZOIDS DURING HORIZONTAL ROTATION ON CLINOSTATS[J].Journal of Molecular Cell Biology,1997(2).
Authors:CAI Wei Ming Markus Braun Andreas Sievers
Abstract:The basipetal movement of statoliths in Chara rhizoids, similar to that during parabolic flights of TEXUS rockets occurs also during rotation on clinostats. Within 15 min on fast-rotating clinostat, the distance between the center of the statolith complex and the cell vertex increases for 60% of that in positively gravitropic downward growing rhizoids. Cytochalasin D experiments confirm that the movement of statoliths is actin-dependent and the actin filaments exert basipetal forces on statoliths in gravity field. The clinostat and/or cytochalasin experiments confirm the suggestion that on earth the position of statoliths depends on the balance of the gravitational force and the counteracting force mediated by actin filaments. The statolith center keeps a stable position during about 30 min on a fast-rotating clinostat, i. e. it is then in a new dynamically stable state. This new state is achieved 15 min after the basipetal actin filament-mediated force has been disturbed by clinostatting. Further experiments on the fast-rotating clinostat show that this new position brings about a reorganization of actin filaments which makes the process of acropetal transport of statoliths possible. The amplitude of particle oscillatory movement decreases as the rotational speed of the clinostat increases. This explains the differences of the results obtained from the experiments on fast-rotating and slow-rotating clinostats. It should be kept in mind that rhizoids are unicellular. The fast-rotating clinostat is suitable for simulation of conditions without gravity when a rhizoid is on the axis of rotation. The interaction of statoliths and actin filaments at zero gravity can be studied by means of such a clinostat.
Keywords:Chara (rhizoids)  Statolith  Ac-tin filaments  Clinostat (fast-and slow-rotating)  Microgra-vity    
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号