首页 | 本学科首页   官方微博 | 高级检索  
     


Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe
Authors:Jonathan Lenoir  Bente Jessen Graae  Per Arild Aarrestad  Inger Greve Alsos  W. Scott Armbruster  Gunnar Austrheim  Claes Bergendorff  H. John B. Birks  Kari Anne Bråthen  Jörg Brunet  Hans Henrik Bruun  Carl Johan Dahlberg  Guillaume Decocq  Martin Diekmann  Mats Dynesius  Rasmus Ejrnæs  John‐Arvid Grytnes  Kristoffer Hylander  Kari Klanderud  Miska Luoto  Ann Milbau  Mari Moora  Bettina Nygaard  Arvid Odland  Virve Tuulia Ravolainen  Stefanie Reinhardt  Sylvi Marlen Sandvik  Fride Høistad Schei  James David Mervyn Speed  Liv Unn Tveraabak  Vigdis Vandvik  Liv Guri Velle  Risto Virtanen  Martin Zobel  Jens‐Christian Svenning
Affiliation:1. Ecoinformatics & Biodiversity Group, Department of Bioscience, Aarhus University, , Aarhus C, DK‐8000 Denmark;2. Ecologie et Dynamique des Systèmes Anthropisés (EA 4698), Plant Biodiversity Lab, Jules Verne University of Picardie, , Amiens, Cedex 1, FR‐80037 France;3. Department of Biology, Norwegian University of Science and Technology NTNU, , Trondheim, NO‐7491 Norway;4. Norwegian Institute for Nature Research, , Trondheim, NO‐7485 Norway;5. Troms? University Museum, , Troms?, NO‐9037 Norway;6. School of Biological Sciences, University of Portsmouth, , Portsmouth, PO1 2DY UK;7. Institute of Arctic Biology, University of Alaska, , Fairbanks, AK 99775 USA;8. Museum of Natural History and Archaeology, Norwegian University of Science and Technology, , Trondheim, NO‐7491 Norway;9. Malm? Museer, , Malm?, SE‐201 24 Sweden;10. Ecological & Environmental Change Research Group, Department of Biology, University of Bergen, , Bergen, NO‐5020 Norway;11. Environmental Change Research Centre, University College London, , London, WC1E 6BT UK;12. School of Geography and the Environment, University of Oxford, , Oxford, OX1 3QY UK;13. Department of Arctic and Marine Biology, University of Troms?, , Troms?, NO‐9037 Norway;14. Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, , Alnarp, SE‐23053 Sweden;15. Center for Macroecology, Evolution and Climate, Department of Biology, University of Copenhagen, , Copenhagen, ? DK‐2100 Denmark;16. Department of Botany, Stockholm University, , Stockholm, SE‐106 91 Sweden;17. Institute of Ecology FB 2, University of Bremen, , Bremen, DE‐28359 Germany;18. Department of Ecology and Environmental Science, Ume? University, , Ume?, SE‐901 87 Sweden;19. Biodiversity & Conservation, Department of Bioscience, Aarhus University, , R?nde, DK‐8410 Denmark;20. Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, , ?s, NO‐1432 Norway;21. Department of Geosciences and Geography, University of Helsinki, , Helsinki, FI‐00014 Finland;22. Climate Impacts Research Centre, Department of Ecology and Environmental Science, Ume? University, , Abisko, SE‐98107 Sweden;23. Institute of Ecology and Earth Sciences, University of Tartu, , Tartu, EE‐51005 Estonia;24. Telemark University College, , B?, NO‐3800 Norway;25. Faculty of Engineering and Science, University of Agder, , Kristiansand, NO‐4604 Norway;26. Norwegian Forest and Landscape Institute, , Fana, NO‐5244 Norway;27. Department of Education, University of Troms?, , Troms?, NO‐9037 Norway;28. Norwegian Institute for Agricultural and Environmental Research, , Hellevik, NO‐6967 Norway;29. Department of Biology, University of Oulu, , Oulu, FI‐90014 Finland
Abstract:Recent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000‐m2 units (community‐inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1‐km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1‐km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100‐km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (June, July, August). Growing‐season CiT range within 1‐km2 units peaked at 60–65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography‐related variables and latitude explained 35% of variation in growing‐season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing‐season CiT within 100‐km2 units was, on average, 1.8 times greater (0.32 °C km?1) than spatial turnover in growing‐season GiT (0.18 °C km?1). We conclude that thermal variability within 1‐km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.
Keywords:climate change  climatic heterogeneity  community‐inferred temperature  Ellenberg indicator value  plant community  spatial heterogeneity  spatial scale  temperature  topoclimate  topography
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号