首页 | 本学科首页   官方微博 | 高级检索  
     


Metal ion-induced conformational changes in Escherichia coli alkaline phosphatase.
Authors:H Szajn  H Csopak
Abstract:Ultraviolet difference spectra are produced by the binding of divalent metal ions to metal-free alkaline phosphatase (EC 3.1.3.1). The interaction of the apoprotein with Zn2+, Mn2+, Co2+ and Cd2+, which induce the tight binding of one phosphate ion per dimer, give distinctly different ultraviolet spectra changes from Ni2+ and Hg2+ which do not induce phosphate binding. Spectrophotometric titrations at alkaline pH of various metallo-enzymes reveal a smaller number of ionizable tyrosines and a greater stability towards alkaline denaturation in the Zn2+- and Mn2+-enzymes than in the Ni2+-, Hg2+- and apoenzymes. The Zn2+- and Mn2+-enzymes have CD spectra in the region of the aromatic transitions that are different from the CD spectra of the Ni2+-, Hg2+- and apoenzymes. Modifications of arginines with 2,3-butanedione show that a smaller number of arginine residues are modified in the Zn2+-enzyme than in the Hg2+-enzyme. The presented data indicate that alkaline phosphatase from Escherichia coli must have a well-defined conformation in order to bind phosphate. Some metal ions (i.e. Zn2+, Co2+, Mn2+ and Cd2+), when interacting with the apoenzyme, alter the conformation of the protein molecule in such a way that it is able to interact with substrate molecules, while other metal ions (i.e. Ni2+ and Hg2+) are incapable of inducing the appropriate conformational change of the apoenzyme. These findings suggest an important structural function of the first two tightly bound metal ions in enzyme.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号