首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq
Authors:Anto P Rajkumar  Per Qvist  Ross Lazarus  Francesco Lescai  Jia Ju  Mette Nyegaard  Ole Mors  Anders D B?rglum  Qibin Li  Jane H Christensen
Abstract:

Background

Massively parallel cDNA sequencing (RNA-seq) experiments are gradually superseding microarrays in quantitative gene expression profiling. However, many biologists are uncertain about the choice of differentially expressed gene (DEG) analysis methods and the validity of cost-saving sample pooling strategies for their RNA-seq experiments. Hence, we performed experimental validation of DEGs identified by Cuffdiff2, edgeR, DESeq2 and Two-stage Poisson Model (TSPM) in a RNA-seq experiment involving mice amygdalae micro-punches, using high-throughput qPCR on independent biological replicate samples. Moreover, we sequenced RNA-pools and compared their results with sequencing corresponding individual RNA samples.

Results

False-positivity rate of Cuffdiff2 and false-negativity rates of DESeq2 and TSPM were high. Among the four investigated DEG analysis methods, sensitivity and specificity of edgeR was relatively high. We documented the pooling bias and that the DEGs identified in pooled samples suffered low positive predictive values.

Conclusions

Our results highlighted the need for combined use of more sensitive DEG analysis methods and high-throughput validation of identified DEGs in future RNA-seq experiments. They indicated limited utility of sample pooling strategies for RNA-seq in similar setups and supported increasing the number of biological replicate samples.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1767-y) contains supplementary material, which is available to authorized users.
Keywords:Gene expression  Next-generation RNA Sequencing  Predictive value of tests  Quantitative real-time polymerase chain reaction  Sensitivity and specificity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号