首页 | 本学科首页   官方微博 | 高级检索  
     


8 Using pseudorotation as a reaction coordinate in free energy simulations of nucleic acids
Authors:Li Li
Affiliation:Center for Computational and Integrative Biology, Massachusetts General Hospital , Boston , MA , 02114 Phone: (617) 726-5980 Fax: (617) 726-5980
Abstract:
Backbone sugar groups are central components of nucleic acids. The conformations of the ribose/deoxyribose can be elegantly described using the concept of pseudorotation (Altona and Sundaralingam, 1972), and are dominated by the C2′- and C3′-endo conformers. The free energy barrier of the transition between these two major puckering modes can be probed by NMR relaxation experiments (Johnson and Hoogstraten, 2008), but an atomic picture of the transition path per se is only available for several truncated nucleoside analogues (Brameld & Goddard III, 1999). Here, we implemented a new free energy simulation method for Molecular Dynamics simulations using pseudorotation as the reaction coordinate (Cremer and Pople, 1975). This allowed us to compute the free energy landscape of a complete pseudorotation cycle. The free energy landscape revealed not only the relative stability of C2′- and C3′-endo conformers, but also the main transition path and its free energy barrier. As a validation of our new approach, we calculated free energy surface of the pseudorotation of guanosine monophosphate. The free energy surface revealed that the C2′-endo conformation is ?1?kcal/mol that is more stable and the free energy barrier for the transition is 4.5–5?kcal/mol. These are in excellent agreement with previous NMR measurements (Zhang et al., 2012; Röder et al., 1975). We have further applied this method to other systems that are important in pre-biotic chemistry, including an RNA duplex with unique 2′, 5′-phosphodiester linkages.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号