1. Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iranmohammadreza.bozorgmehr@gmail.com;3. Departments of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Abstract:
Multi-spectroscopic and density functional theory (DFT) calculations was used to study the interaction between cyclophosphamide (CYP) and aspirin (ASA) with lysozyme (LYS). The experimental results showed that fluorescence quenching of LYS by drug was a result of the formation of drug–LYS complex; static quenching was confirmed to result in fluorescence quenching. Modified Stern–Volmer plots of interaction between CYP and ASA with protein in the binary and ternary systems were used to determine the binding parameters. Molecular distances between the donor (LYS) and acceptor (CYP and ASA) for all systems were estimated according to Forster’s theory. The quantitative analysis obtained by CD spectra suggested that the presence of ASA and CYP decreased the α-helical content of LYS and induced the destabilizing of it. Theoretical studies on the interaction between LYS with ASA and CYP have been carried out using DFT at the B3LYP/6-31G level in the solvent phase. Binding energy of the mentioned complexes was calculated. It showed that tryptophan (Trp) 62 had the most affinity toward ASA and CYP. Analyzing the calculated results revealed that the five member ring of Trp has a key role in interaction of LYS with ASA and CYP.