首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional replacement of the FabA and FabB proteins of Escherichia coli fatty acid synthesis by Enterococcus faecalis FabZ and FabF homologues
Authors:Wang Haihong  Cronan John E
Institution:Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA.
Abstract:The anaerobic unsaturated fatty acid synthetic pathway of Escherichia coli requires two specialized proteins, FabA and FabB. However, the fabA and fabB genes are found only in the Gram-negative alpha- and gamma-proteobacteria, and thus other anaerobic bacteria must synthesize these acids using different enzymes. We report that the Gram-positive bacterium Enterococcus faecalis encodes a protein, annotated as FabZ1, that functionally replaces the E. coli FabA protein, although the sequence of this protein aligns much more closely with E. coli FabZ, a protein that plays no specific role in unsaturated fatty acid synthesis. Therefore E. faecalis FabZ1 is a bifunctional dehydratase/isomerase, an enzyme activity heretofore confined to a group of Gram-negative bacteria. The FabZ2 protein is unable to replace the function of E. coli FabZ, although FabZ2, a second E. faecalis FabZ homologue, has this ability. Moreover, an E. faecalis FabF homologue (FabF1) was found to replace the function of E. coli FabB, whereas a second FabF homologue was inactive. From these data it is clear that bacterial fatty acid biosynthetic pathways cannot be deduced solely by sequence comparisons.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号