首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Control of nitrate and nitrite assimilation by carbohydrate reserves,adenosine nucleotides and pyridine nucleotides in leaves of Zea mays L. under dark conditions
Authors:M P Watt  V M Gray  C F Cresswell
Institution:(1) CSIR/University Photosynthetic Nitrogen Metabolism Research Unit, Botany Department, University of the Witwatersrand, Johannesburg, South Africa
Abstract:The rate of in-vivo nitrate reduction by leaf segments of Zea mays L. was found to decline during the second hour of dark anaerobic treatment. On transfer to oxygen the capacity to reduce nitrate under dark conditions was restored. These observations led to the proposal that nitrate reductase is a regulatory enzyme with ADP acting as a negative effector. The effect of ADP on the invitro activity of nitrate reductase and the changes in the in-vivo adenylate pool under dark-N2 and dark-O2 were investigated. It was found that ADP inhibited the activity of partially purified nitrate reductase. Similarly, the in-vivo anaerobic inhibition of nitrate reduction was associated with a build-up of ADP in the leaf tissue. Under anaerobic conditions nitrite accumulated and on transfer to oxygen the accumulated nitrite was reduced. To explain this phenomenon the following hypothesis was proposed and tested. Under anaerobic conditions the supply of reducing equivalents for nitrite reduction in the plastid becomes restricted and nitrite accumulates as a consequence. On transfer to oxygen this restriction is removed and nitrite disappears. This capacity to reduce accumulated nitrite was found to be dependent on the carbohydrate status of the leaf tissue.
Keywords:Adenylate pool  Glucose  NADH  Nitrogen metabolism (dark-O2  dark-N2)  Zea (nitrogen metabolism  leaf)
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号