首页 | 本学科首页   官方微博 | 高级检索  
     


Metabolic fingerprints of human primary endothelial and fibroblast cells
Authors:Polona Žigon  Katjuša Mrak-Poljšak  Katja Lakota  Matic Terčelj  Saša Čučnik  Matija Tomsic  Snezna Sodin-Semrl
Affiliation:1.Department of Rheumatology,University Medical Centre Ljubljana,Ljubljana,Slovenia;2.Faculty of Pharmacy, Chair of Clinical Biochemistry,University of Ljubljana,Ljubljana,Slovenia;3.Faculty of Mathematics, Natural Sciences and Information Technology,University of Primorska,Koper,Slovenia
Abstract:

Introduction

Human primary cells originating from different locations within the body could differ greatly in their metabolic phenotypes, influencing both how they act during physiological/pathological processes and how susceptible/resistant they are to a variety of disease risk factors. A novel way to monitor cellular metabolism is through cell energetics assays, so we explored this approach with human primary cell types, as models of sclerotic disorders.

Objectives

In order to better understand pathophysiological processes at the cellular level, our goals were to measure metabolic pathway activities of endothelial cells and fibroblasts, and determine their metabolic phenotype profiles.

Methods

Biolog Phenotype MicroArray? technology was used for the first time to characterize metabolic phenotypes of diverse primary cells. These colorimetric assays enable detection of utilization of 367 specific biochemical substrates by human endothelial cells from the coronary artery (HCAEC), umbilical vein (HUVEC) and normal, healthy lung fibroblasts (NHLF).

Results

Adenosine, inosine, d-mannose and dextrin were strongly utilized by all three cell types, comparable to glucose. Substrates metabolized solely by HCAEC were mannan, pectin, gelatin and prevalently tricarballylic acid. HUVEC did not show any uniquely metabolized substrates whereas NHLF exhibited strong utilization of sugars and carboxylic acids along with amino acids and peptides.

Conclusion

Taken together, we show for the first time that this simple energetics assay platform enables metabolic characterization of primary cells and that each of the three human cell types examined gives a unique and distinguishable profile.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号