首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biosynthesis of glycerol phosphate is associated with long-term potentiation in hippocampal neurons
Authors:Giuseppe Martano  Luca Murru  Edoardo Moretto  Laura Gerosa  Giulia Garrone  Vittorio Krogh  Maria Passafaro
Institution:1.Institute of Neuroscience,CNR,Milan,Italy;2.Fondazione IRCCS,Istituto Nazionale dei Tumori,Milan,Italy
Abstract:

Introduction

Neurons have a very high energy requirement, and their metabolism is tightly regulated to ensure delivery of adequate substrate to sustain neuronal activity and neuroplastic changes. The mechanisms underlying the regulation of neuronal metabolism, however, are not completely clear.

Objective

The objective of this study was to investigate the central carbon metabolism in neurons, in order to identify the regulatory pathways governing neuronal anabolism and catabolism.

Methods

Here we first have applied MS-based endometabolomics to elucidate the metabolic dynamics in cultured hippocampal primary neurons. Using nanoLC-ESI-LTQ Orbitrap MS approach followed by statistical analysis, we measure the dynamics of uniformly labeled 13C-glucose entering neurons. We adapted the method by coupling offline patch-clamp setup with MS to confirm findings in vivo.

Results

According to non-parametric statistical analysis of metabolic dynamics, in cultured hippocampal neurons, the glycerol phosphate shuttle is active and correlates with the metabolic flux in the pentose phosphate pathway. In the hippocampus, glycerol-3-phosphate biosynthesis was activated in response to long-term potentiation together with the upregulation of glycolysis and the TCA cycle, but was inactive or silenced in basal conditions.

Conclusions

We identified the biosynthesis of glycerol-3-phosphate as a key regulator in mechanisms implicated in learning and memory. Notably, defects in enzymes linked with the glycerol phosphate shuttle have been implicated in neurological disorders and intellectual disability. These results could improve our understanding of the general mechanisms of learning and memory and facilitate the development of novel therapies for metabolic disorders linked with intellectual disability.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号