首页 | 本学科首页   官方微博 | 高级检索  
     


Temperature-dependent calcium-induced calcium release via InsP3 receptors in mouse olfactory ensheathing glial cells
Authors:Stavermann Maren  Buddrus Kristina  St John James A  Ekberg Jenny A K  Nilius Bernd  Deitmer Joachim W  Lohr Christian
Affiliation:Abteilung für Allgemeine Zoologie, Universit?t Kaiserslautern, Germany.
Abstract:
Cooling can induce Ca(2+) signaling via activation of temperature-sensitive ion channels such as TRPM8, TRPA1 and ryanodine receptor channels. Here we have studied the mechanism of cooling-evoked Ca(2+) signaling in mouse olfactory ensheathing cells (OECs), a specialized type of glial cells in the olfactory nerve layer of the olfactory bulb. Reducing the temperature from above 30°C to 28°C and below triggered Ca(2+) transients that persisted in the absence of external Ca(2+), but were suppressed after Ca(2+) store depletion by cyclopiazonic acid. Cooling-evoked Ca(2+) transients were present in mice deficient of TRPM8 and TRPA1, and were not inhibited by ryanodine receptor antagonists. Inhibition of InsP(3) receptors with 2-APB and caffeine entirely blocked cooling-evoked Ca(2+) transients. Moderate Ca(2+) increases, as evoked by flash photolysis of NP-EGTA (caged Ca(2+)) and cyclopiazonic acid, triggered InsP(3) receptor-mediated Ca(2+) release at 22°C, but not at 31°C. The results suggest that InsP(3) receptors mediate Ca(2+)-induced Ca(2+) release in OECs, and that this Ca(2+) release is temperature-sensitive and can be suppressed at temperatures above 28°C.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号