首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Allometric growth and carbon storage in the mangrove Sonneratia apetala
Authors:Zhu  Dehuang  Hui  Dafeng  Wang  Mengqi  Yang  Qiong  Li  Zhen  Huang  Zijian  Yuan  Hanmeng  Yu  Shixiao
Institution:1.Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510275, China
;2.Shenzhen Research Institute, Sun Yat-Sen University, Guangzhou, 518054, China
;3.Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
;4.Guangdong Neilingding Futian National Nature Reserve, Shenzhen, 518040, China
;
Abstract:

Allometric growth reflects different allocation patterns and relationships of different components or traits of a plant and is closely related to ecosystem carbon storage. As an introduced species, the growth and carbon storage of Sonneratia apetala are still unclear. To derive allometric relationships of the mangrove S. apetala and to estimate carbon storage in mangrove ecosystems, we harvested 12 individual Sonneratia apetala trees from four different diameter classes in the Futian National Nature Reserve, Guangdong, China. Allometric growth models were fitted. The results showed that diameter at breast height (DBH) and wood density were better variables for predicting plant biomass (including above- and below-ground biomass) than plant height. There were significant power function relationships between biomass and DBH, with a mean allometric exponent of 2.22, and stem biomass accounted for 97% of the variation in S. apetala total biomass. Nearly isometric scaling relationships were developed between stem biomass and other biomass components. To better understand the carbon stocks of the S. apetala ecosystem, we categorized all trees into five age classes and quantified vegetation carbon storage. The S. apetala vegetation carbon storage ranged from 96.48 to 215.35 Mg C ha?1, and the carbon storage significantly increased with stand age. The allometric equations developed in this study are useful to estimate biomass and carbon storage of S. apetala ecosystems.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号