Herbs and grasses as an allochthonous resource in open-canopy headwater streams |
| |
Authors: | HOLLY L. MENNINGER MARGARET A. PALMER |
| |
Affiliation: | American Institute of Biological Sciences, Washington, D.C., U.S.A.; Chesapeake Biological Laboratory, Center for Environmental Sciences, University of Maryland, Solomons, MD, U.S.A. |
| |
Abstract: | 1. The organic matter dynamics of streams dominated by herbs and grass on their banks are poorly understood, despite the fact that such streams are common worldwide. Further, herbs and grasses can provide large quantities of detritus to stream food webs, and particularly small streams can be heavily shaded by overhanging vegetation, perhaps limiting in‐stream primary production. 2. We quantified the standing crop of edge vegetation and associated macroinvertebrate communities along three headwater streams with herbaceous and grass riparian vegetation on agricultural land in the Piedmont of Maryland, U.S.A., measured the decomposition of four common species of herbs and grasses using experimental leaf packs, and removed edge vegetation experimentally to determine the effect of shading on benthic algal production. 3. Large standing crops of plant material (average range: 68–276 g ash‐free dry mass per m−2), composed largely of monocotyledons, were found at all three study streams. These values are similar to those for coarse particulate organic matter in deciduous forested streams in the eastern U.S.A. In addition, diverse assemblages of shredding macroinvertebrates were observed at all three study sites. 4. Decomposition of the herbs was faster than that of the grasses, and both decomposed faster than most deciduous tree leaf litter. The decomposition rates of the herbs and grasses were significantly related to leaf quality as measured by leaf nitrogen content. Macroinvertebrate shredders colonized all experimental leaf packs, and the colonization of the herbs was faster than that of the grasses. 5. The accrual of chlorophyll‐a after the removal of shading vegetation was faster than that measured prior to removal as well as that in an unmanipulated control reach. 6. Given that the standing crop of organic matter in streams with herbs and grass along their banks was similar to that in forested streams, that the organic matter was rich in nitrogen and used by detritivores, and riparian shading limited algal growth, we suggest that herbaceous and grass plant material may be an important allochthonous food resource in such systems. |
| |
Keywords: | agriculture headwater stream herbaceous vegetation macroinvertebrate organic matter decomposition |
|
|