首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of cholesterol on Ca2+-induced aggregation of liposomes and calcium diphosphatidate membrane traversal
Authors:A Chauhan  V P Chauhan  H Brockerhoff
Abstract:Sonicated cholesterol-phosphatidylcholine (PC) liposomes containing 4 mol % phosphatidic acid (PA) aggregate in 10 mM Ca2+, slowly at low molar fractions of cholesterol (up to 30%) and 15 times faster at higher concentrations; the inflection point is at ca. 35 mol % bilayer cholesterol. O-(Methoxyethoxy)ethoxy]ethyl]cholesterol (OH-blocked cholesterol) does not give this rate enhancement. If PC is replaced by diether PC (CO groups abolished), cholesterol does not accelerate aggregation at concentrations in the bilayer below 50 mol %. No change in Ca2+-induced aggregation rates was observed if the ester CO groups of the bridge-forming PA only were replaced by CH2 (diether PA) in liposomes containing PC and cholesterol. PA-mediated Ca2+ membrane traversal seems to be accelerated by the addition of cholesterol to the PC-PA membrane, but analysis shows that the effect is due to the bilayer condensation effect of cholesterol resulting in an increase in the surface concentration of PA and that membrane cholesterol in fact slightly reduces the rate of Ca(PA)2 traversal; OH-blocked cholesterol, however, increases this rate 3-fold. It appears that lipid OH and CO groups interact, directly or with the mediation of water, in establishing the structure of the membrane "hydrogen belts", i.e., the strata containing those hydrogen-bond donors and acceptors. Cholesterol hydroxyl above 33 mol % (saturation of a 2:1 PC/cholesterol complex?) causes a restructuring of the hydrogen belts that facilitates membrane-water-membrane dehydration, the prerequisite for liposome aggregation by trans-Ca(PA)2 formation. On the other hand, the formation of the dehydrated cis-Ca(PA)2 complex that precedes Ca2+ membrane traversal is not accelerated by presence of the cholesterol hydroxyl group.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号